TUTAUSS 175 CHICAGO UNIV ILL DEPT OF OEOPH“SICAL SCIENCES
IDEAL SOLUTION OF AN INVERSE NORMAL MODE PROBLEM WITH FINITE SP

F/¢ 8/7

==ETC (V)
JUN 78 V BARCILON NOOO14=T6=C=
INCLASSIFIED B s

L
END
DATE
FILMED
8 =78
DDC




prem—— e U

AU No.——

s ) e 1rmes e . 4 a f \
FUR '\Jhilln..r'n thl'tl gt g@ /"}
S 2 1
<> e &
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) -
o o

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
[T REPGAT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
N00014-76-C-0034
TITLE (and Subtitlg) s. TYPE OF R MO COVERED

0 deal soluticn of an inverse normal mode ep.%.‘June '78
roblem with Qnite spectral datap = : o

i l UTHOR(S) CONTRACT OR GRANT NUMBER(s)
O %r/hrci lon ; 'qg\ Né”l‘i-%-c-#% SG, ..727#
m 9. PERFORMING ORGANIZATION NAME AND ADDRESS '0—-'“22".‘;o!.l-xlﬂsrf-”‘:}:&‘ff:- TA ;

. . [
o The Unlvgrsigy of Chlcagq NR O41-476
< 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT O 1 N 1E
o 0ffice of Naval Research =
<T 800 North Quincy Street - NUGREN

18

Arlington, Va. 22217
| . MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 18. SECURITY CLASS. (of thie report)

(see block 11) Unclassified
1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. ODISTRIBUTION STATEMENT (of thie Report)
T DISTRIDUTION STRTEMENT A |
| I

| Rpproved for publ 1£1£086; i
‘! o ~rikution Unlimited i O/\
R ‘ ) R ( 5
- - O A

DDC FiLE copy

y
P~ > @
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) V : ,9)/ Q-\
A Q& R
(\\3 BQ
N\ \
Ny

18. SUPPLEMENTARY NOTES v w\/

19. XSy WOROS (Continue on reverse eide if necessary and identify by block number)

inverse eigenvalue problem
optimization

20. ABSTRACT (Continue on reverse eide if neceseary and identity by block number)

The problem of reconstructing the density of a vibrating string given
the first N eigenfrequencies for two vibrating configurations admits an
infinite number of solutions. Among all such strings compatible with the
truncated data set, we define the ideal string to be that string for which
a weighted average of the density is minimum. We prove that this ideal
string must have a finite number of degrees of freedom and hence, that it is
made up by a finite number of concentrated point masses. By speciaiizing the

DD , o' 1473  eoimion oF 1 MoV 68 13 OssoLETE lfﬂl il 71, \10 9.‘_

. - 1 ———————————————————————————————————
T SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

- — ] R




selumTyY ASSIFICATION OF THIS PAGE(When Date Entered)

20. optimality criterion, we can also show that the Krein string is an
ideal string.

”ll"“l,

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




Ideal solution of an inverse normal mode problem

with finite spectral data.

v
Victor Barcilon Department of the Geophysical Sciences,

The University of Chicago, Chicago, IL 60637, USA

Summary. ¥;e problem of reconstructing the density of a vibrating string given
the first N eigenfrequencies for two vibrating configurations admits an infinite
number of solutions. Among all such strings compatible with the truncated data
set, we define the ideal string to be that string for which a weighted average
of the density is minimum. We prove that this ideal string must have a finite
number of degrees of freedom and hence, that it is made up by a finite number

of concentrated point masses. By specializing the optimality criterion, we can

also show that the Krein string is an ideal string.
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1. Introduction.

This paper is concerned with the solution of inverse eigenvalue problems
for which the data sets are insufficient for insuring unique solutions. This
situation‘is typical of most inverse eigenvalue problems arising in Geophysics.

A very appealing approach to certain inverse problems with partial data
sets was pioneered by Parker (1974, 1975). His original work dealt with inverse
problems associated with the reconstruction of a buried body embedded in a known
matrix from surface gravity anomaly data. Confronted with the inherent nonunique-
ness of the problem, he decided to construct that particular body which was (i)
capable of explaining the data and (ii) had the least possible maximum density.
Parker called this unique body the ideal body. Thus, out of a set of many possible
solutions, he singled out a particular one by means of an extremum criterion. This
procedure yielded rigorous bounds for the entire class of solutions.

A similar approach has also proved very successful is studying certain
turbulent flows (Howard 1963, 1972, Busse 1969). There the problem stems from
the fact that the Navier-Stokes equations admit a multiplicity of solutions.

Out of this class of solutions, a distinguished one is selected by means of an
optimality criterion. This optimum solution can then yield general results, e.g.
bounds on all solutions.

The present paper attempts to approach the simplest inverse normal modes
problem, namely that for a vibrating string, from the same point of view. The
data, which consist of truncated frequency spectra, cannot guarantee a unique
solution to the inverse problem. Among the set of strings which have the same
given eigenfrequencies, we shall select an ideal string. As a selection criterion,
we shall minimize a weighted average of the density. “We shall prove that this
ideal string has a finite number of degrees of freedom and hence, is made up of

concentrated point masses joined by weightless threads.
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The particular features of the ideal string can be found by solving a
convex programming problem. Sabatier (1977a,b) was the first to point out the
relationship between Parker's ideal body theory and the classical theory of
linear programming. A similar relationship exists here. For a special ideality
criterion, the solution to this programming problem can be trivially obtained.

This special case is discussed at the end of the paper.
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2. The extremum criterion for the ideal string.

The vibrating system of interest consists of a string of (dimensionless)

density p(x), of unit length and taut by a unit tension. Two vibrating configu-

rations will be used, differing from each other by the fastening at the left end.

The corresponding eigenvalue problems will be written thus:

' \

L
u, + Anp u, = 0 3

& (2.1)

]
o
-

un(O) cosa - u;(o) sina

un(l) cosy + u;(l) siny

)
o
-
N

and

"
Yn i unp Yn ¥ 0 .

vn(O) cosf - v;(O) sinB

]
o

\ £2.2)

(']
o
—

vn(l) cosy + u;(l) siny

o,B,Y are parameters such that
Ogsa<Bgn/l.
As a result the system represented by (2.1) is stiffer than that associated with

(2.2) and the eigenfrequencies interlace as follows:

u‘<xl<o.. un<)(n<.-. (2.3)
It is preferable to write (2.1) and (2.2) as integral equations, viz.
1
b0 =2, | 0@ 6608 u (@)eE (2.4)
and
]
v () = u jo p(£) T(x,E) v, (E)dE (2.5)
where




{(1-E)cosy + siny}{xcosa + sina}

N ! x < E
Glx, £) cosacosy + sin(at+y) (2.6)

{(1-x)cosy + siny}{&cosa + sina}
x> &
and T'(x,E) is obtained by replacing a by B in the above formula.

Given p(x), (2.4) and (2.5) can be looked upon as recipies for calculating
the corresponding eigenvalues Xn and Mo For brevity, we denote the result of
these calculations by the notations An[p] and un[p] which emphasize that X  and
u, are functionals of p(x).

It is well known (Borg 1946), that the complete X and u spectra are necessary
(and sufficient) for the unique determination of p(x). Therefore, if we are only
given the truncated spectra {An}? and {un}? we cannot infer p(x) uniquely: there
are infinitely many strings with the first N natural frequencies. Let us denote
the set of these strings by RN’ i.e.

Ry = {o(x); p(x)20, A [p] = A, u [l =u , n=1, 2, . .. N} (2.7)

Next, we define a weighted average of p(x), viz.

1
Mlo] = SO #is) ple) a7 (2.8)

where f(x) is a positive, continuously differentiable function of our own choosing.
The only other condition which we shall place on f(x) is that:
f(1) cosy + f°(1) siny = 1 . (2.9)
For instance, if y = 0, we can take f(x) to be equal to xk, in which case
M[p] would correspond to the k-th moment of the density distribution.
We can now state the extremum criterion which will define the ideal
string. From among all the strings in R, the ideal string p(x) is that string

for which the weighted average M is a minimum.
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3. Structure of the ideal string.

Iin order to find the density ﬁ(x) of the ideal string we must solve the
following rather atypical problem in the calculus of variations.

1

Minimize M[p] = S F(x) o(x)dx (3.1)
0
subject to the equality constraints
A el =2
=, 2,0 0 o N) (3.2)
wlel = p

and to the inequality constraint

o(x) > 0. (3.3)
In order to transform this optimization problem into a more standard form,
we shall first prove that the ideal string must be made up of a finite number J
of concentrated point masses, i.e. that

Blx) = Z m, 8 (x=x,) (3.4)
j=1

The proof is of the reductio ad absurdum type. Namely, if R,® denotes the subset

N
of RN which is made up of all the strings with an infinite number of eigenfre-

quencies;fthen we shall assume that the ideal string is in that subset, i.e.

0 (x)eRy (3.5)

and then see that this assumption least to a contradiction.

We start by writing

o(x) = [r(x)1% , (3.6)

thus satisfying the inequality constraint (3.3). Since ?z(x)eRNw, we can solve

A
(2.4) and (2.5) and construct the set of functions {wn(x)}T defined as follows:

+Note that this class of strings is not equivalent to the class pelL, (0,1).
Indeed, even though p-l+m6(x-k)[L (0,1), it has an infinite number of eigcnfrequencles.
A rlgorous treatment of this point would require the use of Stieltjes integrals.

|




A
Wy 00 = 10 (0712

) ; nel, 2 .4+« (3.7)
Wy (x) = [uﬂ(x)]2

This set of squares of the eigenfunctions is complete (Borg 1943, p. 61, Levitan
1952,1964). This result is closely related to the theorem regarding the uniqueness

of the solution of the inverse Sturm-Liouville problem, Heuristically, this result
can be understood as follows. Consider two strings p(x) and p(x) + 8p(x),

where 8p is a small density variation. The corresponding eigenvalues differ by

! 2
So 50 (x) u? (x)dx
B (3.8a)

n 1 A
S o (x) u (x)dx
0

and

! 2
‘ S 80(x) v (x)dx
Su_ = - ﬁ : (3.8b)

j o(x) v:(x)dx
0

respectively. |If it were possible to find a 8p(x)Z0, which is orthogonal to all

the functions {wn(x)}lm’ then these two strings would have the same ) and u spectra.

But this is not possible on account of Borg's theorem (Borg 1946). Hence the
functions {Vn(x)}lm, and in particular {Qn(x)}'m, form a base.

Unfortunately, the base thus formed is not orthonormal. This is a minor
nuisance since a second base, bi-orthogonal to the first is usually required. We

A 0
denote this base by {Qn(x)}' and adopt the normalization
1 A A
L wm(x)Qn(x)dx = Gmn ’ (3.9)

where amn is the standard Kronecker delta. The actual construction of the

A
functions Qn(x) can be carried out by means of a Gram-Schmidt like procedure.

aall.




A
Let us consider next a string [r(x) + Gr(x)]2 which is in R, i.e. a

N’
nearly ideal string. As can be seen from (3.8), the fact that this string is

A
in R, implies that Yor is orthogonal to the functions wn(x) forn=1, 2, ..., 2N.

N
Consequently,
A e A ‘
rér= ] aQ (x (3.10)
n=2N+1

where the coefficients {an} are arbitrary. Consequently, the variation in the

weighted mean, viz.

! A
M = 2 J‘ f(x) r 8r dx , (3.11)
0
can be written thus:
eo 1 A
M = 2 Z a J f(x)Qn(x)dx . (3.12)
n=2N+1 0

A
Now, since p(x) is the ideal string, this variation must vanish for all an's.

This requires that

1
j f(x)an(x)dx =0 n=2N+1, ... (3.13)
0

and therefore the function f(x) admits the following finite series representation:

2N A
f(x) = Z] fn wn(x) ; (3.14)
n-

By means of simple manipulations, we can also write

2N Ay
f(x)cosy+f’ (x)siny = Z fn[Qn(x)cosy+wn(x)sinyl % (3.15)
n=|

Now, recalling condition (2.9) we can see that near x = 1, the left hand side of
the above equation is a function nearly equal to 1, whereas on account of the
boundary condition at x = 1, the right hand side represents a function nearly
equal to 0. More specifically, we can always find an interval, say (1-g,1),
over which (3.15) is false. We have reached a contradiction which implies that
a(x) is not in RNQ. Consequently g(x) must have a finite number of degrees of

freedom and hence be cf the form (3.4).
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By making use of this knowledge about the structure of the ideal string,
we can transform the original problem (3.1) - (3.3) into a programming problem.
Indeed, by replacing (3.4) into (3.1) - (3.3), we can state the new problem as
follows:

J
Minimize M= ) f(x.) m. |, (3.15)
P g

subject to the equality constraints

G

1
9 det(Gijmj X— sij) O ,

n
0= ke 2y ivey B £3.18)

L |
n

= det(P‘jmj -—26..)=0,

and the inequality constraints

o-x0<x]<o-o < x = |

(3.17)

In (3.16)

Gij = G(xi, xj)

rij = F(xi, xj)

and ''det'' stands for determinant. Even though it is not possible to write the

solution of (3.15) = (3.17) for a general function f(x) and general spectral data,

much is known about such problems (see e.g. Gass 1969).

R — o N —

P RS .




L. A special case: the Krein string

If the function f(x) is chosen as follows:
f(x) = %-(xcosB - sinB)2 (4.1)
where € is determined by means of (2.9), viz.
¢ = (cosB+sinB) (cosBcosy+sinBcosy+2cosBsiny) , (4.2)
then the convex programming problem (3.15) - (3.17) can be solved very easily.
Note that for this case, the ideal string minimize a linear combination of the
mass M_ and the first and second moments MI and M2. Indeed,

0
Mlp] = %-(M2c0523+2M]sinBcosB+Mosin28) . (4.3)

It is possible to express this combination of MO’ M] and Mz in terms of

the given eigenvalues, viz.

cosBcosy+sin (B+yY)

" cosacosy+sin(a+y) °

COSZB+2M'sinBcosB+MosinZB = sin(B-a)

2

— . : (4.4)
n=1 R u
- =2) (- +)
H U U N

where the prime indicates that the term k = n is omitted. This formula, which
is derived in the appendix, generalizes the formula for Mo first given by Krein
(1951, 1952)."

Returning to the ideal string, we can show that the number of degrees
of freedom of this string is equal to N. Indeed, if it were made up of J>N

point masses, then it would have J eigenfrequencies {An}IJ and {un} J, and

t+Krein's formula is obtained by settinga =y = 0 and B = /2.
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Ml Z m; G(x-x )] = Qz ! (4.5)
J- n=] J 3 " J 4
w o T ot
k=1 k k=1 k

where Q is a constant related to o, B and Y. Recalling that the u and ) eigen-
values interlace, it is easy to see that all the terms in the above sum are

positive. Consequently,

P

M[Zm 6(x-x)]>QZ - ’

J” J n=1]

%TT '—JT“"T)
k= k k=1
where
J

P = 1

n . (4.6)

_H i T
k=N+1 (1 "/uk)“ "/).k)

On account of the ordering of the eigenvalues Mo and )‘n’ it is obvious that

a1 (4.7)
As a result
Ml z m 8(xx)] > M z m S0ex,')] . (4.8)
j=1 J i=] '

In other words, given the truncated spectra {kn}T and {un}?, the minimum of
Mz coszﬁ + ZM‘ sinBcosB + Mo sinZB is reached for a string with N-degrees of
freedom. Since there is only one such string in RN’ this ideal string is

uniquely determined. For the case oo =y = 0, B = /2 this string is none other
N

than the Krein string obtained by writing the rational fraction I I 0 - Z/)\n)/

(1- Z/un) as a Stieltjes continued fraction, namely i

ad s - —




"—,’(l SN Lt
LU 7]

n=] n

where 2, = Xip1™%;e

-]I-

(4.9)

%




—

-‘2-

Acknowledgments

| am grateful to Professor R. L. Parker for several discussions which
have stimulated my interest in the theory of ideal bodies and to Professor
J. Bona for constructive criticisms of the mathematical proofs. This research
was supported by the Office of Naval Research under Contract NO0OO!4-76-C-0034
and by the National Aeronautics and Space Administration under Grant NSG-7274.
Reproduction in whole or in part is permitted for any purpdse of the United

States Government.




o

-13 -

References

Borg, G., 1946. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe,

Acta Math., 78, 1-96.
Borg, G., 1949. On the completeness of some sets of functions, Acta Math., 91,26h-283.
Busse, F. H., 1969. On Howard's upper bound for heat transport by turbulent

convection, J. Fluid Mech., 37, 457-477.

Gass, S. ., 1969. Linear Programming: methods and applications, McGraw-Hill,

New York pp. 358.

Howard, L. N., 1963. Heat transport by turbulent convection, J. Fluid Mech.,

17, bO5-432,

Howard, L. N., 1972. Bounds on flow quantities, Ann. Rev. Fluid Mech., 4,

473-494,
Krein, M. G., 1951. Determination of the density of an inhomogeneous symmetric

string from its frequency spectrum, Dokl]. Akad. Nauk SSSR, 76, 345-348,

Krein, M. G., 1952. On inverse problems for inhomogeneous strings, Dokl. Akad.
Nauk SSSR, 23, 669-672.

Levitan, B. M., 1952, On the completeness of squares of characteristic functions,

Dokl. Akad. Nauk SSSR, 83, 349-352.

Levitan, B. M., 1964, Generalized Translation Operators and some of their

applications, Israel Program for Scientific Translations, Jerusalem pp.200.
Parker, R. L., 1974. Best bounds on density and depth from gravity data, Geophysics,
39, 6uh-649,
Parker, R. L., 1975. The theory of ideal bodies for gravity interpretation,

Geophys. J. R. Astr. Soc., 42, 315-334.

Sabatier, P. C., 1977a. Positivity constraints in linear inverse problems - 1,

General theory, Geophys. J. R. Astr. Soc., 48, 415-442,

Sabatier, P, C., 1977b. Positivity constraints in linear inverse problems - |1,

Applications, Geophys. J. R, Astr. Soc., 48, Lh3-460.




v thiw

Titchmarsh, E.C., 1962. Eigenfunction expansions; Part |, 203 pp. Oxford.

Whittaker, E. T. & Watson, G. N., 1952,

Cambridge.

A course of modern analysis, 608 pp.




= Al =

Appendi x

A generalization of Krein's formula.

We shall be concerned with a string of density p(x) vibrating in two
different configurations. The eigenvalue problem for the first configuration
is:

"

u + anun = 0

un(O)cosa - un'(O)sina = 0 (A.1)
un(l)cosy +u (1)siny = 0

whereas the second is

v, + unovn = (
vnTO)cosB - vn’(o)slnB = 0 (A.2)

vn(l)cosy + vn’(l)siny =0

Just as in the body of the paper, we can assume without loss of generality
that 0 < a < B < -%-. As a result, system (A.1) is stiffer than system (A.2)

and
ul<)\l(.o- <un<)\n<ooo (A.3)

In order to solve (A.1) and (A.2), we introduce two fundamental solutions

Y,(X;X) and y, (x;1) of the equation

y' + oy =0 (A.4)
such that
Yy (151) = =siny ,
(A.5)
' (151) = cosy
and
y,(1;1) = =cosy ,
(A.6)

¥,  (152) = =siny .




~ P2 =

In view of the linear independence of these solutions and of the
conditions (A.5), (A.6) we can write
Y (6R) y," (GR) =y, (52) v 2 (GA) = 1. (A.7)
It is convenient to introduce two pairs of auxiliary variables, namely

U(x;)) = cosa yl(x;k) - sina y"(x;x)
(A.8)

V(x;\) = cosB y‘(x;l) sinB y]’(x;k)
and
®(x;1) = cosa yz(x;k) - 3ina yz’(x;k)

(A.9)

¥(x;)) = cosB yz(x;k) sinB yz’(x;l)

Several remarks are now in order. First of all, for x = 0 the zeros of
U and V are the eigenvalues of (A.1) and (A.2). Consequently, in view of the

fact that U(0,)) & V(0,)) are entire functions of XA of order 1/2 (Titchmarsh

1962), we can write

qm A
u(o,x) = u(o,0) (1 - ) S
Il
(A.10)
i A
v(0,x) = v(0,0) (- =)
T

Next, we shouid point out that the Wronskian equality (A.7) can be written in
terms of the new variables as follows:
U(x;A) ¥(x;A) = V(x;)) &(x;1) = sin(a=B) . (A.11)

Let us now consider the function

Y o« N(0:0) ¥(0:2) - ¥(0:0) v(0:2)
i z(z-)) v(0;2)

(A.12)

This is ameromorphic function with simple poles at Z = A and Z = un(n-l,z,...) but
not at Z=0. If A isa circle in the Z-plane of radius |Z| = A s then it is

possible to show that




-A.3 -~

L2im

e = ( (A-]3)

] j )
T F(Z;)) dzZ
n

Making use of the calculus of residues, we can rewrite (A.13) thus:

v (030) ¥(0;)) - ¥(0;0)V(0;}) _ °Z° V(050) ¥(051n) ~ ¥(0;0)V (0;up)
AV(0;X) ’

n=1| aV
un(un A) )Y Z’“n

Several simplifications are possible. In particular, since V(O;un) = 0, we can
exploit (A.11) to write ?(O;un) in terms of U(O;un); also we can use (A.10) to

evaluate 3V (0,1)/3)A. Therefore

o

v(0;0) ¥(0;1) - ¥(0/0)V(0;3) _ ) sin(a-8)
X V{0; 1) 2y U(0;0)

1
(u_=2) et _ = _

So far, we have just repeated the various steps in the proof of the Mittag-Leffler
theorem (Whittaker & Watson 1952). We now let A - 0. The above formula becomes:

u(0;0) 2im 1 { v(0;0)¥(0;1) - ¥(0;0)V(0;1) }
v (0; >0 X

! (A.14)

= sin(a-8) ] —

n=1 SR | - U
H n n
H(l-—)ll(l-;‘—)

" kel oo ke k

We shall now see that the left hand side can be expressed in terms of the mass
and first two moments of the density distribution. To that effect, let us
expand yi(x;k) in powers of X and compute the first two terms by substituting
in (A.1) &¢ (A.2). Omitting the intermediary calculations, we get

y,(0;1) = -cosy-siny+A[(M,~M,)cosy+M siny] + . . .
! T : (A.15)

y"(o;k) = cosy+ A[-(Mo-Ml)cosy-Mosinyl .
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and

¥,(051) = siny-cosy+A[-(M;-M,)siny+M cosy] + . . .

y," (051) = siny+x[Mg-M )siny-Mqcosy] + . . .

0

Replacing these expressions in (A.8), (A.3) we deduce that
V(0;)) = -[cosBcosy + sin(B+y)]
+ A[(Hl-Mz)cosBcosY + M‘cosssiny
+ (Mo-Ml)sinecosY + MosinBsiny] + ...
and
¥(0;1) = [cosBsiny - cos(B+y)]
+ A[-(M]-Mz)cosBsinY + M]cosBcosy
- (MO-M‘)sinBsiny + MosinBcosy] B 5 5
and consequently
Lim 1 {v(0;0)¥(0;x) - ¥(0;0)V(0;))} = (M -Mz)cos B
»o X
- M](cosB+sinB)cosB + (NO'HI)SIHBCOSB
- Mo(cosB+sinB)sinB
As a result (A.14) reads:

cosacosy+sin (a+y)
cosBcosy+sin (B+y)

(M cos B + 2M;sinBcosB + M05|n B) -

sin(B-a) Z
n=] U,
T Y Y
k=1
For a=0, B=r/2 and y=0, the formula reduces to

M ) ]
0~ n=1

"W(u--)ﬂ(r-r>

k=1
which is the formula given by Krein (1952).

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
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